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By using the method of steepest descent, I have compared the suitability of three different 
methods for solving problems in a semi-infinite or infinite domain using Chebyshev 
polynomials. Exponential mappings are uniformly bad. Domain truncation and algebraic 
mapping both work well, but each is superior for a different category of problems. When the 
solution is an entire function, then domain truncation is best. It is always simpler to apply 
than algebraic mapping and always at least as accurate-much more accurate for functions 
which decay very rapidly. For singular functions, on the other hand, algebraic mapping is 
better because it is less sensitive to the mapping scale factor L, permitting a better 
compromise in resolving both the singularity and the exponential decay. For both types of 
problems, I give simple, explicit estimates of both the optimum choice of domain size or 
mapping factor and of the attainable accuracy. For the model entire function exp ]-AZ’] on a 
semi-infinite interval (0, co], the optimum domain size is L = 0.896(n/A)“k and the smallest 
attainable error is roughly e-“(“.RP6’k where n is the number of Chebyshev polynomials used. 
Similar formulas for singular functions handled via algebraic mapping are given in (3.41) to 
(3.45) below. 

1. INTRODUCTION 

In a recent paper, Grosch and Orszag [l] have performed a numerical analysis of 
the problem of solving differential equations in a semi-infinite or infinite domain 
using Chebyshev polynomials. Since the polynomials are defined only on a finite 
interval, it is necessary to use one of three procedures. First, impose artificial boun- 
daries at a large but finite distance (a procedure that will henceforth be called 
“domain truncation”) and solve the problem on the interval [0, L] instead of [O, 001. 
Second, one can employ an algebraic mapping of the form 

z=2 A-- -1, 
( 1 L-h2 

(1.1) 

* Current address: Department of Atmospheric and Oceanic Science, University of Michigan, Ann 
Arbor, MI 48109. 

43 
0021-9991/82/010043-37SO2.00/0 

Copyright 0 1982 by Academic Ress, Inc. 
All rights of reproduction in any form reserved. 



44 JOHN P. BOYD 

where L is a constant to transform z E [0, co] into the finite interval Z E 1-1, 11. 
Third, one can use an exponential mapping of the form 

z = 1 - &-=JL (l-2) 

for the same purpose. Other types of mappings are possible, but (1.1) and (1.2) are 
representative of the range of options available. 

Grosch and Orszag [l] found that if the exact solution to the original problem 
decayed exponentially fast as (xl+ co, then all three would work, but algebraic 
mapping gave the best results with domain truncation second and exponential 
mapping a very poor third. 

The principal limitation of their study was that it was entirely empirical: they 
solved various differential equations in different ways and compared the numbers. 
The purpose of this present work is to extend theirs by deriving asymptotic approx- 
imations to the Chebyshev coefficients of simple model functions. Through them, it 
will be possible to make more systematic comparisons of different methods, extend 
the range of comparisons, and perhaps most important, give simple analytic formulas 
for choosing the optimum domain size or mapping parameter L for various 
situations. 

In turn, this analytic simplicity imposes two limitations. First, the most common 
use of Chebyshev series is to solve differential or integral equations by the Lanczos 
tau-method (described in Gottlieb and Orszag [2]) or something similar. The 
resulting approximate solution has two sources of error. First, because only a finite 
number of polynomials N can be retained in the expansion, there is a series trun- 
cation error due to chopping off higher terms in the series. In addition, the N retained 
coefficients as generated by the tau-method usually differ slightly from the 
corresponding coefftcients of the exact solution, a difference that may be denoted the 
“tau error.” Unfortunately, there is no simple, general way of analyzing the tau error, 
so this work will concentrate strictly on the series truncation error and also, for 
domain truncation, on the error in using an interval of finite size. 

This would seem quite restrictive, but Gottlieb and Orszag [2] have pointed out 
that empirically, the series truncation error and the tau error are almost always the 
same order of magnitude, regardless of the particular algorithm, the smoothness of 
the solution, or the finiteness of the domain. The property of exponential or “infinite 
order” convergence, which will be explained in Section 2, provides a strong 
theoretical justification for this conclusion: that optimizing the convergence of the 
first N coefficients of the exact solution will minimize the error in the approximate 
solution of the differential equation with the series truncation error and “tau-error” 
being roughly the same order of magnitude. 

In .consequence, in the rest of this work, “optimizing convergence” will refer to 
obtaining the best possible Chebyshev series approximation to a known, explicit 
model function. No differential equations will be solved. 

The second restriction is the use of model functions of the form 

f(z) = eeLk (1.3) 
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or 

where k and s are constants. Similar but greater restrictions were implicit in Grosch 
and Orszag [ 11, who presented only specific case studies, and in any numerical 
analysis, one must impose some conditions on the class of problems studied. The 
obvious question is whether the set of functions given by (1.3) is sufficiently general 
to be useful. 

The first part of the answer to this question is that Grosch and Orszag found-as 
common sense would suggest- that domain truncation and mapping work well only 
when the solution decays exponentially fast at infinity. By varying k in (1.3), we can 
here go beyond that to explore how the effectiveness of different methods varies with 
the rate of exponential decay. Although the numerical tables we will present are 
limited to integral k, the analytic formulas we derive are applicable to any k. Thus, 
the results of this paper are relevant to the Airy function A,(x), whose asymptotic 
form is proportional tof(z) in (1.3) with k = 3/2. 

The second part of the answer is that we will show that the asymptotic 
convergence of the Chebyshev series for a function is dominated by a combination of 
(i) the factor causing strongest exponential decay and (ii) the location-but not the 
type-of the singularity nearest the computational interval. This means that if we 
must deal with a function such as 

f(z) = e-++r*, (1.5) 

the optimum choice of the domain size or mapping parameter L for (1.5) will be 
approximately the same as for (1.3) with k = 4. Furthermore, it will be shown that 
the methods derived here can be almost trivially extended to (1.5) itself if need be, 
albeit at the expense of more complicated results. 

Since the convergence depends only on the locution of the singularity, with but a 
weak dependence on the type of the singularity, it follows that if we choose s to be 
the (possibly complex) location of the convergence-limiting singularity, we will obtain 
good predictions for the optimum L and for the number of polynomials N we need to 
achieve the desired degree of accuracy even if this singularity is actually a branch 
point or a higher order pole. 

Thus, the model functions (1.3) and (1.4) will be sufficient to cover most cases 
which arise in practice. Little is sacrificed, and much simplicity gained, by concen- 
trating on these simple functions. 

The plan of the paper is as follows: Section 2 defines several useful measures of 
convergence and error. Section 3 explains how the method of the steepest descent can 
be used to derive simple asymptotic approximations to the Chebyshev coefficients 
and how in turn these approximations can be used to pick the best domain size or 
mapping parameter. The tine details of the steepest descent method are banished to 
Appendix A. Section 4 shows via numerical experiments that the asymptotic analysis 
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does indeed work. The next section explains how the analysis presented here for a 
semi-infinite interval can be extended-sometimes trivially-to a fully infinite 
domain. Section 6 deals briefly with exponential mappings and the final section is a 
summary and prospectus. 

2. ORDERS OF CONVERGENCE 

The parameter k which appears in (1.3) is the “order” of the entire function as 
usually defined in complex variable theory, and this definition will be here extended 
to the parameter k that appears in (1.4) although the latter functions are not entire 
because of the pole at z = -s. For purposes of discussion, it will be helpful to also 
define “orders” of convergence for Chebyshev series as well, and one must be careful 
to keep the distinction between “orders” of a function and “orders of convergence” 
for a series in mind. 

The rate of convergence of a Chebyshev series is conventionally defined in terms of 
an “algebraic index of convergence” as follows: 

DEFINITION. A Chebyshev series whose coefficients are {b,} is said to have an 
“algebraic index of convergence J”’ if j is the largest number for which 

lim njlb,l< co. 
n-r* (2.1) 

If (2.1) is satisfied for any finite j, no matter how large, then the series is said to have 
“infinite order” or “exponential” convergence. 

The weakness of this conventional definition is that all Chebyshev series for any 
function have “infinite order” convergence unless the function has an unbounded 
derivative of some order on the expansion interval itself-which is not true of any of 
the model functions used here. Consequently, more precise terminology is needed. 

The coefficients of the geometric series b, = q” satisfy 

lim logfl=logq, 
n+cc n (2.2) 

where log q is a constant independent of n. This motivates the following. 

DEFINITION. A Chebyshev series whose coefficients are {b,} is said to have 
“supergeometric,” “geometric,” or “subgeometric” convergence if 

!“, hdlb,I)ln = 03 (supergeometric) 
= constant (geometric) (2.3) 
=o (subgeometric). 
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It has been shown (and will be demonstrated in Section 3) that the Chebyshev coef- 
ficients of an entire function on a finite interval satisfy 

bdlb”I) - OWk) h#>lY (2.4) 

where k is the order of the entire function (Gottlieb and Orszag [2]). Since this is the 
only case of “supergeometric” convergence that will arise here, no further distinctions 
are necessary. The definition of “geometric” convergence is restrictive enough so that 
no additional qualifiers are needed. It can be shown (Gottlieb and Orszag [2]) that 
the coefficients of the expansion of a function with a simple pole on a finite interval 
must have “geometric” convergence with q in (2.2) being related to the location of 
the convergence-limiting singularity through a simple formula that will be given and 
exploited later. 

When we begin to consider infinite intervals mapped into finite intervals, however, 
“subgeometric” convergence will be the rule, and here we must be more precise. A 
series such as 

b, = e-qnD (2.5) 

technically possesses “subgeometric, ” “infinite order” convergence for any positive q 
and /3 such that p < 1, so a more precise measure of convergence is desirable. This is 
given by the following. 

DEFINITION. A sequence with coefficients {b,} is said to be subgeometrically 
convergent with exponential convergence order r if 

lim 1% I log(l b” III = r 
“-CC lofdn) (2.6) 

with r < 1. 

Thus, the series (2.5) has exponential convergence order r = p. We must refer to r 
as the “exponential” order of convergence to distinguish it from the more conven- 
tional definition of “algebraic” convergence given by (2.1) above. 

The conventional measures of error are also inadequate for our purposes. The most 
obvious measure of error is simply to take the absolute value of the largest dfference 
between the exact f(x) and its truncated expansion, the so-called L, norm, but it is 
diflicult or impossible to compute this analytically for the model dunctions 
considered here. If we are to make explicit suggestions for choosing a near-optimum 
domain size or map parameter L, we must have measures of error which are simple 
and analytic, even at the cost of some precision. We shall therefore define three such. 

DEFINITION. The “domain error” E,(L) in applying the method of domain trun- 
cation to a function f(z) is defined to be 

&(L)=lf(LX (2.7) 

501/45/l-4 
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where the computational domain is z E [0, L]. (It is implicitly assumed that 

If(z>l < If( 

for all z > L as is true of the model functions (1.3) and (1.4) used here.) 

W) 

The motivation for this definition is fairly obvious. With domain truncation, we are 
in effect approximating the function f(z) by a truncated Chebyshev expansion on 
[0, L] and by f(z) = 0 on [L, co]. If the function is decaying outside the 
computational domain, as it must be for the method to work well, then the L, error 
on [L, 001 will simply be the right-hand side of (2.7)---outside the computational 
domain, f(z) differs most from 0 at z = L itself. 

It can be rigorously proven (Fox and Parker [3]) that the L, error in truncating a 
Chebyshev expansion after N terms is bounded by the sum of the absolute values of 
all the higher order neglected terms, i.e., 

f(z)- i b,T#? & 5 IhI. 
n=o n=N+l 

(2.9) 

(This bound is the best possible since the equality holds whenever the coefficients are 
alternating or are all of the same sign.) Regrettably, it is usually impossible to sum 
these higher order coefficients exactly, so one must again define something cruder. 
Fortunately, it is normally the case that the Chebyshev coefficients converge so 
rapidly for a function which is infinitely differentiable everywhere on the expansion 
interval that 

f lbnlN O(lbNI)’ (2.10) 
n=N+ I 

For a geometrically convergent series, one can prove (2.10) holds rigorously. This 
motivates the following. 

DEFINITION. The series truncation error E,(L, N) is defined to be the absolute 
value of the largest coefficient retained in the truncation: 

Es& N) = I kvl. (2.11) 

In later sections, we shall show that for entire functions, the optimized expansions 
do converge geometrically so that (2.1 l), although unorthodox, really is a reliable 
measure of error. For the subgeometrically convergent expansions which we shall 
encounter for the singular model functions (1.4), (2.11) can be a bit misleading. For 

b, = e-q”‘, (2.12) 

where q and I are positive constants, one can show by bounding the sum by an 
integral which is the incomplete gamma function and then using the known 
asymptotic expansion for the latter that 

lbNl <$P 2 I&J. 
n=N+ 1 

(2.13) 
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Thus, for a subgeometrically convergent series (r < l), Es@, N) becomes smaller and 
smaller in comparison to be true error as N increases. However, the proportionality 
factor in (2.13) is increasing algebraically with N whereas the error in Chebyshev 
expansion is decreasing exponentially as more terms are added in the expansion. 
Therefore, Es& N) will give only a small relative error in the logarithm of the error 
in truncating the Chebyshev series even though the absolute error may be a factor of 
10 or more larger than E,(L,N) when N is very large. It will turn out that a good 
estimate of the logarithm of the error is sufficient to obtain a simple, analytic 
prediction for the map parameter which differs by only a few percent from the true 
optimum L. 

The steepest descent method, which is the basis for our analysis in later sections, 
gives asymptotic approximations to the Chebyshev coefficients which are the product 
of an algebraic factor of n (varying more slowly than linear) with an exponential 
function of n. Just as we have ignored the algebraic factor of N in (2.13) in defining 
the series truncation error E,(L, N), so we shall ignore the algebraic factors of n that 
fall out of the steepest descent method, and choose our best value for L by 
manipulating only that part of the asymptotic approximation which varies exponen- 
tially with n. When we do this and substitute the steepest descent formula, saris 
algebraic factor, into (2.12), the errors in neglecting algebraic factors will in fact 
largely cancel each other since the steepest descent factor always decreases with 
increasing n. 

Thus, using (2.13) to define the error in truncating the series after N terms with the 
implicit assumption that the algebraic factor from the steepest descent result will be 
dropped before substitution into (2.13), is in fact a reasonable estimate for our 
purposes. The purist can always put the algebraic factors back in, but the tables given 
below will show that this is rarely worth the effort. 

For singular functions, it is helpful to define a third error term. When the model 
function f(z) has a pole, it may be necessary to deform the original contour into a 
steepest descent path in such a way that the pole lies between the steepest descent 
contour and the original path of integration. In this case, the asymptotic approx- 
imation to b, consists of one or more stationary point contributions plus the residue 
at the pole. For singular functions, as for entire functions, we will take the error due 
to truncating the Chebyshev series as being roughly the order of magnitude of the 
highest retained coefficient, but we will reserve E,(L, N) for the stationary point 
contibutions and use the following for the residue term. 

DEFINITION. The “pole error” E,(L, N) is defined to be 

E, = 
1 n 

s + (27 - 1)]‘2 I ’ 
(2.14) 

where S is the location of the pole in the transformed variable Z, and where the sign 
of the square root is that which maximizes the absolute value of the denominator. 
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A factor independent of it has been omitted from (2.14), consistent with the 
philosphy of considering only factors that vary exponentially with n; the exact 
contribution of the pole to the Chebyshev coefficients, obtained through the calculus 
of residues, is given in (3.32) below. 

3. THE METHOD OF STEEPEST DESCENT 

The Chebyshev coefficients b, of a function can be asymptotically evaluated for 
large n by applying the method of steepest descent to an integral representation of the 
coefficients as first done by Elliot and Szekeres [4] and Miller [5]. The virtue of our 
model functions is that the asymptotic forms of their coefficients are sufficiently 
simple that one can easily determine what values of L, the domain size or mapping 
parameter, give the most rapid Chebyshev series convergence for a given function. 

The method of steepest descents is applied to integrals of the form 

I(n) = J, h(z) emcr*“) dz, (3.1) 

where C is some contour in the complex plane. The basic idea is to deform the 
contour of integration into new “steepest descent” path such that the integral is 
dominated, as n -+ co, by the contributions from the neighborhoods of the stationary 
points z,(n), where 

Mzs, n). = 0 
dz * 

Then as n + co, the integral is approximately given by 

(3.2) 

(3.3) 

where the sum is over all stationary points on the new contour of integration and 
where the double prime denotes the second derivative with respect to z. 

There are two additional terms that must sometimes be added to the sum of 
stationary point contributions in (3.3): (i) endpoint contributions (if the contour is 
open) and (ii) residues at singularities (if the integrand has a pole within the region 
between the old and new contours of integration). It will turn out that the only 
endpoint terms which arise here will cancel out and not affect the asymptotic approx- 
imations. For our singular model functions, however, the residues at the pole z = --s 
must be added to the stationary point contributions and represent the principle 
difference between the entire functions and those with a simple pole. The stationary 
point contributions are essentially the same for either case except that the latter have 
l/(z, + s) in the factor h(z,) in (3.3). 
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The details of actually choosing the steepest descent path and computing the 
stationary points are not trivial and are given in the Appendix. Here, we will simply 
give a broad outline of the procedure. 

The starting points for our work are the two equivalent integral representations 

bn=+jJ (l& f(z) e- nlogtZ+(z~-l)‘~*1 

due to Elliot [6] where the path of integration is any closed contour enclosing the 
interval [-1, l] and where the branch is chosen so that (2’ - I)“* - IZI for large Z 
and second 

b, = $1: f (cos t) eint dt + complex conjugate, (3.5) 

which follows from the usual integral form of the Chebyshev coefficients by making 
the change of variable Z = cos t, exploiting the well-known identity T,(cos t) = 
cos(nt) and then writing the cos(nt) as a sum of complex exponentials. The first 
integral representation is the most convenient for Chebyshev series with domain 
truncation because the contour is closed and we need not worry about endpoint 
contributions. With algebraic mapping, however, our transformed function f(t) is 
singular at one endpoint, so (3.4) is not suitable. The integral which is written 
explicitly in (3.5) does have an endpoint contribution, but this is cancelled when the 
integral is added to its complex conjugate to give b, itself. 

Our model entire function is 

f(z) = emAZk. (3.6) 

In order to convert this to standard form, we must employ the transformations 

z+ (3.7) 
domain truncation 

z+z+ 1) (3.8) 

and 

Z&Z-1 
L+z 

z=L (l+Z) 
algebraic mapping 

(1 -z> 

Then the integrals which we must asymptotically evaluate are 

bn = $1 (1 _ :,,I,, e@(‘) dZ domain truncation 

P-9) 

(3.10) 

(3.11) 
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with 

and 

6(Z) = -[A(L/2)k](Z + 1)” - n log[Z + (Z’ - 1)“2] (3.12) 

I, = ii,; e”“’ dt algebraic mapping (3.13) 

#(t) = --[ALk] cotanzk(t/2) + int, (3.14) 

where the coefficients are given by b, = Z,, + I,*, where the asterisk denotes the 
complex conjugate. 

There are actually two distinct asymptotic approximations that can be derived for 
each integral. The “regular” asymptotics are obtained by allowing n -+ co with L 
fixed. The “uniform” asymptotics are obtained by allowing both n and L to 
simultaneously tend to 03 in such a way that L cc n’lk. 

With L fixed, the stationary points of (3.11) all are such that IZ, ] -+ co as n -+ co 
while the stationary points ] t,) + 0 in this same limit for (3.13). Because of this, # in 
(3.12) [3.14] can be approximated by its large [small] limit so that both the 
stationary points and the value of $ at the stationary points can be obtained in simple 
analytic form as given in the Appendix. One finds 

4-L le (n/k-nlogl(Ak)‘lkLl-n/klog(n)) 

n-t uo, L fixh [domain truncation], 

b, 1: [ ] e-pn2k’(*kt’) cos[qn2kl(Zk+ I) $ 7r/(2k + 2)], 
n + co, L fixed [algebraic mapping], 

where 

p=(2 + l/k)A'l'2k+l)Lkl(Zk+l) cos 

q = (2 + l/k)Al/(Zk+l)Lk/(2k+l) sin . 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

The empty square brackets in (3.15) and (3.16) denote the algebraic factors 
[ {27r/(+“)}“‘h in (3.3)] which, as described earlier, will be ignored in estimating the 
optimum values of L. 

Equation (3.15) is dominated by the last term in the exponential which shows that 
one obtains “super-geometric” convergence in the sense defined in Section 2. This is 
actually a general property of the Chebyshev series for any entire function expanded 
on a finite interval as shown by Gottlieb and Orszag [2], but here it is misleading 
because we are interested in an approximation over a semi-infinite interval. With L 
fixed, the domain error E, is fixed and does not converge at all unless L is somehow 
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increasing with n. We need the “uniform” asymptotic approximations to obtain the 
best possible results for an entire function. 

A similar remark is true for algebraic mapping. Although the Chebyshev series will 
converge even if the mapping parameter L is fixed, (3.16) shows that the convergence 
is “sub-geometric” with exponential convergence order r = 2k/(2k + l), which is not 
impressive. 

If we allow L to vary as n ‘lk however, we find that for both domain truncation , 
and mapping, the total error decreases geometrically and that this is the best possible 
for a transcendental function. To evaluate the Chebyshev coefficients and choose the 
best proportionality factor for L, we must use the “uniform” asymptotics. 

To obtain them, let 

AL k = h, (3.19) 

where J is a constant independent of n, which implies 

(3.20) 

where L is either the domain size or the mapping parameter. The functions can then 
be factored as 

4(Z) = -n 
I 
$z+ l)k+log[Z+(ZZ- 1)“‘1/ [domain truncation], (3.21) 

d(t) = -n{l cotan2k(t/2) + if} [algebraic mapping]. (3.22) 

Since n is a common factor, it can simply be divided out of the equation that 
determines the stationary points, (3.2), so that the stationary points are independent 
of n and functions only of the constants 1 and k for the “uniform” asymptotics. 
Because the stationary points have fixed, finite values independent of n, however, 
instead of tending to zero or infinity for n large, one must use the full forms of (3.21) 
and (3.22) in (3.3) to obtain the stationary points. 

It is, however, a trivial task to compute the stationary points for various L and k 
and then determine which values of 1, I,,,(k), gives (ignoring algebraic factors and 
examining $(Z,) alone) the smallest total error. For domain truncation, the total error 
is the sum of the domain (E,) and series (Es) errors defined in Section 2; for 
algebraic mapping, the total error is simply the series truncation error. 

The results for integral k are given in Tables I and II along with the parameter 6(k) 
for which the total error is 

total -0 f 
n 

E [C )I (3.23) 

when the optimum value of 1 is employed. Note that L and 6 are independent of A in 
(3.6) and depend only on k, the order of the entire function. 
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TABLE I 

Optimum Scaling and Accuracy for Domain Truncation 

1 0.896 2.45 
2 0.803 2.23 
3 0.719 2.05 
4 0.645 1.90 
5 0.577 1.78 

Note. 1 defined by (3.19). The error is approx- 
imately E, = (l/S)” when this optimum value of L is 
used. 

As k increases, f(z) tends to the step function 

f(z) = 1, IZI < 13 

= 0, lzl> 17 
(3.24) 

which is discontinuous and has a Chebyshev series whose coefficients decrease 
algebraically (rather than exponentially) with n, so it is obvious that increasing k is 
associated with less and less smoothness forf(z). Hence, 6 decreases with k, implying 
that one is forced to settle for less accuracy (for a given n) for an entire function of 
large order k than for one of lower order. 

The results for domain truncation can be described analytically via 

A = (0.896)k 
ij = eW896P [domain truncation, entire function of order k], (3.25) 

TABLE II 

Optimum Scaling and Accuracy for Algebraic Mapping 

1 0.707 2.414 
2 0.271 1.497 
3 0.173 1.303 
4 0.128 1.218 
5 0.101 1.171 
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and those for algebraic mapping are 

A= 
1 

2kcos -$ [ 1 
6=p+ {p*+ 1}1’2 [algebraic mapping, entire function of order k], (3.26) 

A [ 1 -. 
p=tan 4k 

The simplicity of (3.25) and (3.26) clearly shows the tremendous dividend 
obtained by neglecting the algebraic factors of n represented by the empty brackets in 
(3.15) and (3.16). In the next section, explicit numerical experiments will show that 
these predictions are more than adequate for a numerical modeller, who after all is 
not interested in L and 6 for their own sake, but only for the purposes of solving his 
problem efficiently. Here it will suffice to recall that (3.25) and (3.26) can be 
formally regarded as the lowest order terms in asymptotic expansions of A and 6 
which becomes increasingly accurate as n + co. 

For k = 1, 6 N 2.4 for both domain truncation and algebraic mapping, but as k 
increases, domain truncation can give much higher accuracy than algebraic mapping 
for a given number of Chebyshev polynomials. The reason appears to be that with 
mapping, f(2) is so small that it is indistinguishable from 0 on a finite precision 
computer over a large part of the transformed interval [-1, 11. In effect, a large part 
of [-I, 1 ] is mapped from that portion of the original semi-infinite interval outside 
where one would put the domain boundary when using the other method, especially 
for large k. This is wasteful as reflected by lower values of 6 for k > 1 with mapping. 
The choice of an explicit domain size, in contrast, is a very efficient way of ensuring 
that the Chebyshev polynomials do their work on that region of the original semi- 
infinite interval where f(z) is larger than the preset tolerance E,, and not on the 
region corresponding to larger z where the function is computationally 
indistinguishable from 0. 

Why then did Grosch and Orszag [ 11 conclude that algebraic mapping was 
generally superior to domain truncation even for finding the eigenvalues of the 
quantum mechanical harmonic oscillator whose eigenfunctions (the Hermite 
functions) are entire functions of order k = 2? Part of the answer is that they 
employed the change of variable z = x2 (by exploiting the symmetry of their problem) 
which effectively reduced the order of the solution to k = 1, for which optimized 
algebraic mapping and domain truncation give similar accuracy. The other and more 
important part of the answer is that they observed empirically that algebraic mapping 
was much less sensitive than domain truncation to the precise value of L. 

The reason is that the optimum mapping parameter L is the minimum of a single 
curve (the series error E,). It follows that the graph of E, versus L must be flat and 
therefore relatively insensitive to the precise choice of L in the neighborhood of the 
minimum. In contrast, the domain size L for the other method is determined as the V- 
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necked intersection of two separate curves-one giving the domain error E, as an 
exponentially decreasing function of L and the other displaying the series truncation 
error E, as an exponentially increasing function of L. Figure 1 compares the 6, i.e., 
the logarithm of the total error divided by n, for both domain truncation and 
algebraic mapping as a function of A divided by its optimum value. The graph shows 
clearly that if it were necessary to determine L by trial-and-error, as done by Grosch 
and Orszag, then algebraic mapping would be preferable, at least for k = 1, because 
the accuracy is relatively insensitive to one’s choice of L. The purpose of this paper, 
however, is to make such trial-and-error unnecessary if one knows the asymptotic 
behavior of the solution@) so that (for k > 1) one can exploit the greater accuracy 
of domain truncation for entire functions. 

For singular f(z), however, which we shall consider next, this insensitivity of 
algebraic mapping is crucially important as shall be shown below. 

The Chebyshev coefftcients d, for the singular model function 

(3.27) 

are asymptotically of the form 

d,=b,+c,, (3.28) 

where b, are the stationary point contributions to the asymptotic evaluation of the 
integral representations for the coefficients and the c, are the residues of the pole of 

1.0 - 

I 1 I I I I I 1 I 
0 .25 .5 75 1.0 1.25 1.5 1.75 2.00 2.25 2.5 

X/Xop?imum - 

FIG. 1. 6 versus (A/LOpt,,,,ym ) for domain truncation (solid) and algebraic mapping (dashed) where 
the total error is 0(1/S)“. 
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the integrand. As mentioned earlier, the presence of the denominator in (3.27) merely 
alters the function h(z,) in (3.3) and in our lowest order approximation, we are 
ignoring such factors which vary at most algebraically with n. Thus, the stationary 
point contributions b, in (3.28) are identical with (3.15) and (3.16). 

The pole contributions are given by the exact Chebyshev coefficients of the simple 
function 

AZ> = A’ (3.29) 

where S, the location of the pole in the transformed coordinate Z E [-1, 11, is given 
by 

[domain truncation], (3.30) 

s-&-1 [algebraic mapping]. 

The pole contributions are [6] 

- 2R 
cn=(szw1)1/2 (3.32) 

where 

A = S f (S’ - 1)“’ (3.33) 

with that sign in (3.33) which makes [Al > 1 with 

R = ~U-S’~. (3.34) 

The reason that the pole contributions are given by the Chebyshev coefficients ofp(z) 
is that if we subtract p(z) from f(z), the difference is an entire function and the 
asymptotic form of the coeflicients of [f(z) - p(z)] must therefore be a sum of 
stationary point terms alone. One can of course verify (3.32) directly from the 
integral representations of d,, . 

Although we shall explicitly examine only the case when the nearest singularity is 
a first order pole, Elliot [6] has shown that the coefficients for a logarithmic 
singularity or a second order pole are identical with (3.32), at least for large n, except 
for division by n for the logarithm (due to integrating the pole) or multiplication by n 
(due to differentiating to obtain a second order pole). Elliot [6] finds similar results 
for algebraic branch points. Such factors, although varying only algebraically with n, 
may be significant: the factor of n3 for a fourth order pole with n = 100, for example, 
may be a great embarrassment if ignored, although this is a rather extreme example. 
Nonetheless, consistent with the philosophy of neglecting algebraic factors of n 
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which is adopted here, we can still state that the asymptotic Chebyshev coefficients 
are only weakly dependent on the type of the singularity-it is primarily its location 
relative to the interval [-1, 1 ] in Z that is important. Consequently, considering only 
a simple pole in our model function is not a very serious restriction on the generality 
of our results. 

It is clear from (3.30) through (3.34) that as L increases for either domain trun- 
cation or mapping, the singularity is moved closer to the expansion interval [-1, 1 ] 
in Z and therefore the convergence of (3.32) is decreased. We have already seen, 
however, that it is necessary to increase L with IZ in order to obtain a geometric 
decrease in the stationary point and domain error. Thus, what is good for entire 
functions (L large) is the opposite of what is good for the pole contributions 
(L small) and the best choice of L will necessarily be a compromise. 

Because of this, the best we can hope for is “subgeometric” convergence in the 
sense defined in Section 2: the stationary point contributions decrease geometrically 
only when L increases with n as rapidly as nllk while the pole contributions decrease 
geometrically with n only when L is fixed. The fact that the best compromise will 
clearly involve increasing L with n, but more slowly than rz’lk, does have two virtues. 
First, the stationary points are no longer independent of n as they are when L cc n’lk 
but instead tend to either zero or infinity so that we can use the simpler “regular” 
asymptotic approximations (3.15) and (3.16) instead of the more complicated 
“uniform” approximations involving the full forms of (3.21) and (3.22). Since the 
stationary point term decreases “supergeometrically” for domain truncation in this 
limit, we can ignore it because the dominant error term is the “subgeometrically” 
decreasing domain error E, = exp [ -AL “I. 

Second, since 

L%-S 

for n large, we can approximate (3.30) through (3.33) to obtain 

d N -e2wLvJ~ 

(3.35) 

(3.36) 

for both algebraic mapping and domain truncation. 
Our goal as before is to minimize the total error and in each case, the optimum L 

will be determined as the V-necked intersection of two curves, one giving c,, which 
exponentially increases with L, and the other either E, (domain truncation) or E, (as 
given by (3.16); algebraic mapping) which decreases exponentially with L. One finds 

L = qn2/‘2kt 1) 

22/‘2kt 1) 
qs A2/‘2kt 1) ’ 

l/(Zktl) 

log Etota, - -Qn2k’(2kt ‘) 

(3.37) 

(3.38) 
domain truncation, 

(3.39) 

Q=2 (2k)/(2kt 1’~ 1/(2k+ ljSk/(2k+ 1) (3.40) 
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and for mapping 
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L = qn2/‘4k+ I) 

Q/Z (4k+2)/(4k+l) 

4= 1-I :p 

(3.42) 

P=cos [ 1 & (2 + l/k)[kA]“(2k+‘) 
algebraic mapping. (3.43) 

log Etota, - -Qn4k’(4k+ ‘) (3.44) 

Q = Ps 1 I/2 Zk/(4k+ l)p(Zk+ 1)/(4k+ 1) (3.45) 

We see explicitly from (3.39) and (3.34) that we obtain subgeometric convergence 
in both cases, but the order is r = 2k/(2k + 1) for domain truncation and 
r = 4k/(4k + 1) for algebraic mapping. The reason for the more rapid convergence 
with mapping is, as explained earlier, that the stationary point contribution for 
mapping has a true minimum in L at that value which would be optimum for an 
entire function. In consequence, one can drastically decrease L from what would be 
its optimum value for an entire function without changing the logarithm of E, very 
much. The domain error E, =exp[-ALk], in contrast, is always exponentially 
increasing as L is made smaller, so even modest changes in L from what would be 
optimum for an entire function will drastically increase the error. 

Thus, with algebraic mapping, we can make a better compromise in balancing the 
conflicting demands of the exponential decay off(z) [as measured by the stationary 
point term] and of the singularity [as measured by (3.36)]. Hence, algebraic mapping 
is recommended for functions which have a singularity sufficiently close to the 
expansion interval to be important for the values of total error that is one is striving 
for while domain truncation is recommended for functions that are either entire or 
have singularities too remote from z E [0, 001 to matter. 

In the next section, we shall discuss some simple numerical experiments that 
demonstrate the accuracy of the formulas derived above. 

4. NUMERICAL TESTS OF THE THEORY 

To verify the asymptotic analysis for the Chebyshev coefficients of the model 
functions, a numerical search procedure was used in which the domain size-mapping 
parameter L was varied to determine which value of L, Lbest, gave the smallest error 
(in the L, norm) when the Chebyshev series for a given function was truncated by 
discarding b, + I and all higher coefficients. Results along with the values of L (Lpred) 
and absolute error (Epred) calculated from the asymptotic theory are given in 
Tables III through VI. Clearly, the closer the ratio of Lbest to Lpred is to 1.0, the 
better the prediction of the asymptotic Chebyshev coefficients. The last column of the 
tables provides a more precise measure: It is the ratio of the error computed 



60 JOHN P. BOYD 

numerically, not asymptotically, at L = Lpred with the error at L = Lbest. It thus 
shows by what ratio we increase the error by using the predictions of the asymptotic 
theory instead of finding the optimum L by numerical experimentation. 

For entire functions, one finds that domain truncation (Table III) works well even 
for very small values of n (including n > 3!). The ratio of Lbest/Lpred is clearly 
converging to 1.0 from above, and for all tabulated values of n, E(Lpred)/Ebest is 
roughly 2.0 to 4.0. This is impressive because the error generally decreases by 
roughly this same factor when we increase n by 1. Thus, one can obtain the same 
improvement in accuracy by adding one more Chebyshev polynomial as by keeping n 
lixed and carrying out careful (and possibly expensive) numerical experiments to 
refine L. Clearly, although one would not normally consider a 200% overestimate of 
the error as a function of n to be particularly praiseworthy, the proper test of the 
asymptotic analysis here is that it should give L and the order-of-magnitude of error 
E closely enough to make numerical experimentation to determine L and E both 
wasteful and unnecessary. In this sense and for the model functions used here, the 
asymptotic Chebyshev coefficient analysis is clearly successful. 

The results for Table IV (algebraic mapping, entire functions) are similar to those 
for domain mapping for k = 1, but for larger k, one can see that algebraic mapping is 
poor in comparison to domain truncation for entire functions as the asymptotic 
analysis of Section 3 predicted. Again, however, for all values of the order k one 
sacrifices little by using the theoretical prediction for L; the best value of L for a 
given it reduces the error by a factor too small to be worth the bother. 

One also notes that although the ratio of Lbest/Lpred is usually close to 1.0, 
convergence to 1.0 is not monotonic. In point of fact, this ratio is jumping all over 
the place as n is increased. Although the relatively unsophisticated search procedure 
employed to find Lbest is a bit to blame, more careful searches showed that (i) the 
fact that the Chebyshev coefftcients are discrete rather continuous functions of n and 
(ii) the insensitivity of algebraic mapping to L for entire functions are the primary 
culprits. For both domain truncation and mapping, the Chebyshev coefficients b, are 
damped oscillations as functions of n. The asymptotic theory above considered only 
the “amplitude” of the {b,}, but small shifts in L which move the “phase” of b, + , , 
the first neglected coefficient, closer to a node in (n, L) parameter space may reduce 
the error a little. In all the tables, this phase shifting causes L to occasionally show 
non-monotonic convergence to its asymptotic value as L increases; the “amplitude” 
of the Chebyshev coefficients is so insensitive to L for entire functions treated with 
algebraic mapping that this phase shift effect is greatly exaggerated. 

In spite of this, the most serious defect of the asymptotic theory for algebraic 
mapping is that the attainable accuracy is underestimated by roughly a factor of 10 
for the tabulated n for k = 1. The abstract remedy is to carry the asymptotic analysis 
to higher order retaining the constants and factors which vary algebraically with n 
that were neglected earlier. The pragmatic remedy is to simply divide the predicted 
error by a factor of 10 on the authority of Table IV. 

Tables V and VI give results for k = 1 and three different locations of the pole for 
domain truncation and algebraic mapping, respectively. To facilitate comparison with 
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TABLE III 

(Domain Truncation) Comparison of Actual and 
Predicted Errors and Domain sizes for Entire Functions of Order k 

n L best E best Ebest/Eprcd E&reci)/Ebest 

k=l 

3 4.40 1.64 3.38E - 2 0.497 2.18 
6 7.19 1.34 2.OOE - 3 0.43 1 2.48 

10 10.88 1.21 4.93E - 5 0.384 2.76 
13 13.57 1.16 3.14E-6 0.360 2.92 
16 16.35 1.14 2.03E - 7 0.342 3.07 
20 20.02 1.12 5.34E - 9 0.324 3.23 
24 23.53 1.09 1.42E - 10 0.309 3.37 
28 27.26 1.09 3.86E - 12 0.304 3.44 

k=2 

3 2.11 1.36 4.32E - 2 0.480 2.32 
6 2.63 1.20 3.34E - 3 0.412 2.66 

10 3.21 1.13 8.778 - 5 0.269 3.85 
13 3.58 1.11 7.47E - 6 0.255 4.02 
16 3.92 1.09 6.32E - 7 0.240 4.29 
20 4.35 I .09 1.36E - 8 0.128 8.19 
24 5.01 1.14 7.47E - 10 0.174 6.01 
28 5.01 1.06 3.278 - 11 0.189 5.44 
32 5.36 1.06 1.04E - 12 0.150 6.89 

k=5 

3 1.41 1.27 9.64E - 2 0.545 2.20 
6 1.55 1.21 1.09E - 2 0.345 3.41 

10 1.56 1.10 1.27E - 3 0.410 2.77 
13 1.65 1.10 1.46E-4 0.265 4.29 
16 1.63 1.04 2.57E - 5 0.265 4.13 
20 1.74 1.06 2.19E-6 0.227 4.90 
24 1.76 1.04 2.81E - 7 0.293 3.72 
28 1.79 1.03 2.53E - 8 0.266 3.95 
32 1.84 1.03 1.63E - 9 0.173 6.21 
36 1.89 1.03 2.11E- 10 0.225 4.81 
40 1.91 1.02 2.35E - I1 0.253 4.16 

Note. Lbes, and Ebest are determined by numerically computing the Chebyshev coefficients for 
various L and then picking that value of L, Lbcst, which gives the smallest error Ebest, when the 
Chebyshev series is truncated by discarding bn+, and all higher coefficients. Lpred and Epred are those 
predicted by the asymptotic analysis (given in the text). E(Lpred)/Ebelt is the ratio of the error we would 
make by using L = Lpred in comparison to the smallest error possible for a given value of n. 
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TABLE IV 

(Algebraic Mapping) Comparison of Actual and 
Predicted Errors and Mapping Parameters for Entire Functions of Order k 

k=l 

3 3.11 1.78 8.87E - 3 0.125 2.83 
.6 5.26 1.24 4.95E - 4 0.098 2.52 
10 8.41 1.19 1.16E - 5 0.078 2.55 
13 9.99 1.09 7.72E - 7 0.073 2.30 
16 14.93 1.32 5.57E - 8 0.074 1.36 
20 14.74 1.04 1.41E - 9 0.064 1.91 
24 14.88 0.88 4.24E - 11 0.065 1.99 
28 24.38 1.23 1.20E - 12 0.063 2.09 

k=2 

3 0.85 0.95 1.01E - 1 0.338 1.04 
6 1.53 1.20 2.09E - 2 0.235 1.64 

10 1.53 0.93 3.85E - 3 0.217 1.27 
13 1.97 1.05 9.34E - 4 0.177 1.42 
16 2.34 1.13 2.55E - 4 0.162 1.67 
20 2.34 1.01 4.718 - 5 0.152 1.02 
24 2.36 0.93 9.32E - 6 0.149 1.58 
28 2.93 1.06 1.55E - 6 0.124 1.72 
32 2.94 1 .oo 3.10E - 7 0.125 1.00 

k=5 

3 0.92 1.17 3.29E - 1 0.529 1.25 
6 1.44 1.59 1.99E - 1 0.512 1.13 

10 1.21 1.21 8.32E - 2 0.403 1.18 
13 0.99 0.93 4.76E - 2 0.370 1.21 
16 1.19 1.08 2.45E - 2 0.305 1.42 
20 0.88 0.76 1.47E - 2 0.345 1.04 
24 1.19 0.99 6.176-3 0.272 1.02 
28 1.31 1.06 3.49E - 3 0.289 1.08 
32 1.43 1.13 1.53E - 3 0.238 1.33 
36 1.22 0.94 7.17E-4 0.210 1.30 
40 1.41 1.06 2.456 - 4 0.135 1.84 

the results for entire functions, the singular functions were taken in the normalized 
formf(x) = s exp(-x)/(x + s). The domain truncation error is defined as the value of 
f(t) for purposes of numerically finding Lbest even though the factor l/(L + s) was 
omitted from the asymptotic theory of Section 3 for simplicity. 

For domain truncation, the theory consistently overestimates the optimum value of 
L although there is clear convergence of LbesJLpred to 1.0 from below as n -+ 00 for 
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TABLE V 

(Domain Truncation) Comparison of Actual and 
Predicted Errors and Domain Sizes for Singular Functions with k = 1 

and Various Locations of the Pole at x = --s 

S=O.l 

3 .72 0.41 0.140 0.658 1.40 
6 1.21 0.50 4.94E - 2 0.562 1.67 

10 1.90 0.55 1.66E - 2 0.506 1.90 
13 2.39 0.59 8.1lE-3 0.480 2.03 
16 2.88 q.62 4.29E - 3 0.491 2.13 
20 3.51 0.65 1.94E - 3 0.442 2.24 
24 4.10 0.67 9.3OE - 4 0.427 2.33 
28 4.61 0.69 4.64E - 4 0.414 2.40 
32 5.25 0.71 2.39E - 4 0.401 2.43 
36 5.80 0.72 1.24E - 4 0.383 2.39 
40 6.44 0.75 6.25E - 5 0.346 2.23 

s = 1.0 

3 2.51 0.78 5.73E - 2 1.56 1.14 
6 4.14 0.79 8.26E - 3 1.56 1.32 

10 6.03 0.82 9.48E - 4 1.50 1.47 
13 7.28 0.83 2.26E - 4 1.46 1.55 
16 8.48 0.84 6.OOE - 5 1.43 1.62 
20 9.97 0.85 1.16E - 5 1.39 1.71 
24 11.42 0.86 2.49E - 6 1.36 1.78 
28 12.74 0.87 5.85E - 7 1.33 1.84 
32 14.03 0.88 1.4lE - I 1.31 1.90 
36 15.28 0.88 3.9OE - 8 1.28 1.95 
40 16.50 0.89 l.OSE-8 1.25 1.97 

s = 10.0 

3 4.03 0.57 3.48E - 2 
6 6.58 0.58 2.19E-3 

10 9.91 0.62 6.21E - 5 
13 12.39 0.66 4.62E - 6 
16 14.83 0.68 3.64E - 7 
20 18.07 0.72 1.37E - 8 
24 21.12 0.74 5.79E - 10 
28 24.07 0.76 2.8OE - 11 

42.8 2.2 
1.16E2 4.8 
4.87E2 10.4 
7.51E2 15.5 
9.83E2 20.8 
1.2OE3 27.0 
1.32E2 31.3 
1.39E3 33.9 

Note. The function isf(x) = s exp(-x)/(x + s) with the domain error E, = s exp(-L)/(L + s). 
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TABLE VI 

(Algebraic Mapping) Comparison of Actual and Predicted Errors 
and Mapping Parameters for Singular Functions with k = 1 

and Various Locations of the Pole at x = --s 

s=O.l 

3 0.26 0.47 1.18E-2 1.52 
6 0.35 0.48 l.04E - 3 0.89 

10 0.49 0.55 3.88E - 5 0.32 
13 0.56 0.57 9.75E - 6 0.38 
16 0.60 0.55 2.49E - 7 0.43 
20 0.72 0.61 2.03E - 7 0.24 
24 0.80 0.63 4.786- 8 0.35 
28 0.92 0.68 5.03E - 9 0.22 
32 1.00 0.70 1.28E - 9 0.31 
36 1.10 0.74 1.51E - 10 0.19 
40 1.17 0.75 4.66E - 11 0.31 

s= 1.0 

4.30 
7.24 
2.01El 
1.65El 
1.42El 
2.56El 
1.7OEl 
2.7281 
1.88El 
2.9381 
1.78El 

3 1.82 0.83 2.378 - 3 0.1366 4.48 
6 1.91 0.66 2.478 -4 0.287 3.10 

10 2.76 0.78 6.43E-6 0.263 2.75 
13 2.81 0.71 8.78E- 7 0.429 1.61 
16 4.16 0.97 8.95E- 8 0.466 1.02 
20 3.75 0.80 4.2OE - 9 0.450 1.39 
24 4.57 0.9 1 1.49E - 10 0.290 1.92 
28 5.28 0.99 5.886- 12 0.190 1.38 
32 5.69 1.01 6.28E - 13 0.311 1.04 
36 5.80 0.98 1.24E - 13 0.875 1.02 
40 6.90 1.12 5.3 1E - 14 0.507 1.12 

s = 10.0 

3 4.07 0.47 2.03E- 2 
6 8.66 0.75 7.47E-4 

10 7.72 0.55 9.36E - 6 
13 9.20 0.59 5.51E - 7 
16 13.84 0.8 1 3.39E- 8 
20 13.74 0.74 7.61E - 10 
24 19.91 0.99 1.81E - 11 

28 19.89 0.93 5.55E - 13 
32 25.83 1.15 1.04E - 13 

1.25 5.52 
5.38 8.27 
1.91El 7.41 
5.72El 4.04 
1.5OE2 2.45 
4.0582 2.99 
9.57E2 1.23 
2.5 lE3 2.03 
3.54E4 1.16 
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all three locations of the singularity. The theory is quite successful for both s = 0.1 
and s = 1.0 in the sense that using Lpred instead of Lbest increases the error by at 
worst a factor of 1.5 to 2.5. The large overestimates of L for s = 0.1 are rather 
deceiving in this sense because L is so small that the total error is not very sensitive 
to L. We could probably eliminate most of this overshoot by including the 
multiplicative factor of 2R (R is the residue at the pole) which was dropped for 
simplicity in Section 3 in estimating the error due to the pole contribution. For n = 3, 
this doubling of the pole error would force us to roughly halve L at the expense of 
increasing E, by exp(-0.7), which is roughly also factor of 2. For s = 1.0, the pole 
error is much smaller for a given L so we can employ a much larger L than when the 
singularity is very close to the origin. The total error is much smaller for a given n 
than for s = 0.1 and so is much less sensitive to the factor of 2R, giving us a much 
better ratio of LbesJLpred. 

For s = 10.0, the singularity is so far from the expansion interval of z E [0, L] that 
the pole has only a small impact on the Chebyshev coefficients. In consequence, we 
should ignore the pole (except for very, very large n) and use the theory for entire 
functions. The entries for this part of Table V for L and Ebest are almost identical 
with those for the k = 1 section of Table III. The ratio of Lbest/Lpred is poor because 
the series error Es- neglected in the two way balance between the pole contribution 
and the domain error E, that was the basis of the analysis for singular functions in 
Section 3-is more important than the pole contribution for a distant singularity and 
moderate n. 

Similar remarks apply with algebraic mapping: for s = 10.0, we should ignore the 
pole entirely except for very large s. 

When the pole is important, however, comparison between Tables V and VI shows 
strikingly what was concluded in Section 3: algebraic mapping is far superior to 
domain truncation when f(z) has a singularity close enough to the origin to 
significantly affect the Chebyshev series. When n = 28, for example, algebraic 
mapping gives an error only 5.3E - 9 versus 4.6E - 4 for domain truncation-a 
difference of a factor of 100,000. As explained in Section 3 (but worth reiterating 
here), the reason for this difference is shown in Fig. 1. Algebraic mapping for an 
entire function is insensitive to L because it has a true minimum at the optimum 
value of L. In consequence, we can take L 4 Loptimum , where Loptimum is the value of 
L that would be best for an entire function, with only a modest increase in the 
stationary point contribution to the asymptotic Chebyshev coefficients. 

With domain truncation in contrast, the value of L that is optimum for an entire 
function is the cusp-shaped intersection found by minimizing the sum of the series 
error E, (increasing with L) and the domain error E, (which decreases with L). In 
order to accurately resolve the singularity, we must again take L as small as possible, 
but whereas algebraic mapping is insensitive to L, decreasing L causes the domain 
error E, to increase exponentially. 

If we arbitrarily set L = O.lLoptimum -ignoring the pole for the moment-one 
could obtain the same accuracy for an entire function of order k = 1 by increasing n 
by 1.5, but one would need to increase n by 10 to do the same with domain trun- 
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cation. This difference--one would need six times as many Chebyshev polynomials 
with domain truncation as algebraic mapping for an entire function with 
L = o*lLoptimum -shows clearly that with algebraic mapping, one can take a smaller 
ratio Of L/Loptimum and thus make a better compromise between the conflicting 
demands of the pole and the exponential decay. 

5. EXPANSIONS ON [-CCI,CO] 

When the computational domain is infinite, instead of merely semi-infinite, it is 
usually difficult to make a simple statement about the optimum choice of scale factor 
because f(z) will usually exhibit different asymptotic behavior as z + -co than as 
z + co. The most efficient L for an entire function will then be a compromise between 
what is best for large positive z and what is most effective for large negative z. For a 
singular function, the optimum L will emerge from a three way tug-of-war between 
two stationary point contributions and a pole term in the asymptotic evaluation of the 
Chebyshev coefficient a,. The analysis for an infinite interval involves no new prin- 
ciples beyond those explained above for a semi-infinite interval, but the details do 
become complicated. 

When f(z) does exhibit the same asymptotic behavior as (zl --) 00, however-a 
function symmetric about z = 0, for exampl+then the situation is very different 
because one can apply the results for a semi-infinite interval directly. There are, 
however, two good and one bad way to do this. 

One good technique iff(z) is symmetric about z = 0 was employed by Grosch and 
Orszag: change variable to y = z* and then solve the problem y E [0, co] by either 
algebraic mapping or domain truncation. The virtue of this change of variable is that 
it effectively halves the order k: exp(-z*) [k = 2]+ exp(-y) [k = 11, for example. 
Because of this Grosch and Orszag found that for the quantum harmonic oscillator 
(k = 2, entire function), algebraic mapping was superior to domain truncation 
because it gave as high an obtainable accuracy and was much less sensitive to the 
parameter L. This seems contrary to our earlier finding that one could obtain higher 
accuracy for k = 2 with domain truncation; the resolution of the paradox is that their 
change of variable reduced the order to k = 1 for which the highest accuracy 
attainable with domain truncation is no better than for mapping. 

We can justify this halving-of-order argument and also the second way of dealing 
with an infinite domain by using the Chebyshev polynomial identity 

T*Jw) = T,(2d - 1). (5.1) 

In consequence, if in domain truncation we have the expansion 

--A(L/Z)W+ I)k 

I& + 1) + sl 
= ,$ bj(k L, A, s) 7’,(Z), (5.2) 

making the replacement 
z-+22*-1 
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gives us 

Equation (5.3) is indeed an expansion of our model function on a truncated infmite 
interval, but the notation is that for a semi-infinite interval. If we attacked an infinite 
interval directly, it would be natural to define 

Z’$- (5.4) 

where the computational domain is z E [-L’, L’], to take N to be the degree of the 
highest Chebyshev polynomial in (5.3), K the order off(z), and /i the K-dependent 
constant in the analogue of (3.19), which is 

and to write (5.3) as 

AL’K = /l(K)N (5.5) 

e -ALTKZK 

[L/*2* + s’2] 
= i BjTj (5.6) 

j=o 
t--n/1 

with s’* - - s. Comparison with (5.3) itself shows that 

(5.7) 

for all values of K, L’, and A, and this is an exact relationship quite independent of 
the steepest descent approximations. 

It is now trivial to obtain the optimized parameter values. For entire functions of 
order K, one finds 

A(K) = #K/2), (5.8) 

(5.9) 

where 

A(K) = dm. (5. IO) 

Thus, for domain truncation for a function which is asymptotically similar for both 
large positive and negative z, the optimum scalings for an infinite domain follow 
trivially from those for a semi-infinite interval. 

Strictly speaking, the derivation above applies only to a symmetric function; 
however: it is essentially trivial to obtain similar results for an antisymmetric function 
merely by differentiating (5.3) with respect to x. Any function can be written as the 
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sum of a symmetric function plus an antisymmetric function through the identity 
f(z) = w> + A-z)lP + LfG) - f(-zll+4 so these are the only two cases we need 
to consider. 

For a functionf(z) which is neither symmetric nor antisymmetric, the Chebyshev 
series will need both the even and odd degree polynomials. The square root in (5.10) 
shows that, logically enough, we need twice as many polynomials to obtain a given 
degree of accuracy for a given function on an infinite interval than on one which is 
only semi-infinite. If, however,f(z) is either symmetric or antisymmetric about z = 0, 
we can obtain the same accuracy with half the numberof degrees of freedom by using 
only the Chebyshev polynomials of the same symmetry-the even degree 
polynomials for an even function as in (5.3) and the odd polynomials for an antisym- 
metricf(z). In either event, the total error is proportional to 

Es-0[6(K/2)-"1 (symmetric or antisymmetric f(z)), (5.11) 

where n = N/2 is the number of degrees of freedom. 
Equation (5.12) shows that a third alternative for a function of definite 

symmetry-solving the problem on the semi-infinite interval z E’[O, co] with the 
boundary condition f’(0) = 0 ( s y mmetric function) or f(0) = 0 (antisymmetric)-is 
inferior to the two strategies given earlier because 

Es-0[6(K)-"1 (semi-infinite interval). (5.12) 

Since 6(K) < &K/2), t i is always preferable to either change variable to y = z2, as 
done by Grosch and Orszag, or to solve it on the full interval [-co, co ] using only 
the Chebyshev polynomials of the appropriate symmetry. 

The reason for this difference is that forf(z) = exp(-z2), for example, the function 
varies more and more rapidly as ]z] + 00. Consequently, we need little resolution for 
small z and high resolution for large z. The Grosch-Orszag change of variable is also 
a variable stretching which equalizes. the resolution requirements over the whole 
interval and thus improves the convergence of the Chebyshev series. 

Solving the problem on the full interval [-co, co ] is equally effective for a different 
reason: as discussed at length in Boyd [7], the Chebyshev polynomials have in effect 
a built-in quadratic variable stretching that gives particularly high resolution at the 
ends of the interval. When the problem is solved on z E [0, co], one of these high 
resolution areas in Z is wasted because Z near -1 then corresponds to z near 0. 
When we use the full interval and keep only the even or odd polynomials, the two 
high resolution areas in Z correspond with large positive and negative z where this 
resolution is needed. 

Similar remarks apply to algebraic mapping except that the form of the mapping 
must be changed to 

z= z 
L12 +z2 (5.13) 
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with the explicit inverse 

z = (1 _L;,1,* * 

For the model function on z E [-co, co] 

(5.14) 

(5.15) 

the same substitution 

2-P 2z2 - 1, (5.16) 

which generates (5.3) from (5.2) also generates the Chebyshev expansion of (5.15) 
from that for the corresponding model function (3.27) with the algebraic mapping for 
the semi-infinite interval, (3.10). Therefore, (5.7) to (5.10), which give the 
relationships between the coeffkients and parameters of expansions on infinite versus 
semi-infinite intervals, are exact for algebraic mapping as well as for domain trun- 
cation. 

6. EXPONENTIAL MAPPING 

Consider the mapping 

z= 1 -h-‘/L 

with the inverse transformation 

The model function 

z = -L log[(l - Z)/2]. 

f(z) = emArk 

becomes 

where 

asALk 

For the special case k = 1, (9.4) simplifies to 

AZ)= 0 -z)” 
2” - 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 
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This tells us immediately that exponential mappings are of doubtful value because 
unless a is an integer, (9.6) will be strongly singular at Z = 1. Elliot [6] has shown 
that the resulting Chebyshev coefficients are O(K*~-~), i.e., finite order convergence. 

When k > 2, the convergence is again exponential, but very poor. By performing 
an analysis identical to that in Section 5, one can derive 

b, - e -2k’ogk(n’[ 19 (6.7) 

where the [ ] stands for algebraic and other factors of IZ which decrease more slowly 
than the factor written out explicitly. Since one can show 

limit nib” = 0 
n-em (6.8) 

for any fixed j by rewriting nj as an exponential, it follows that the Chebyshev series 
technically possesses the property of exponential or “infinite [algebraic] order” 
convergence. However, it is equally trivial to show that 

limit e*‘b,, = 03 
“+cO (6.9) 

for any r > 0 which means that the exponential convergence order I, as defined in 
Section 2, is 0 even though the usual algebraic convergence order is infinite. This 
strongly suggests that exponential mappings are highly inferior tools for attacking a 
problem on a semi-infinite domain because the transformed function is too strongly 
singular. 

As noted earlier, the poorness of exponential mappings has already been found 
empirically by Grosch and Orszag [I]. The results of this section are first, to confirm 
their conclusions theoretically, and second, to show that the steepest descent method 
can be applied to assess the usefulness of almost any type of mapping. 

7. SUMMARY 

Steepest descent methods can give simple predictions for the optimum choice of a 
domain size or mapping parameter L in applying Chebyshev polynomial techniques 
on infinite or semi-infinite intervals. For simplicity, attention has been largely 
confined to either (i) entire functions or (ii) exponentially decaying functions with a 
single singularity. 

For entire functions, domain truncation is the surprise winner, particularly for 
higher values of k where k is the order of the entire function. The optimum value of L 
varies with n-this is true for singular functions as well-and the convergence is 
“geometric” in the sense defined in Section 2. The specific formulas are given both in 
Section 3 and the abstract. 

When the function has a pole, the asymptotic Chebyshev coefficients are given by 
the sum of two terms: a stationary point term, identical with that for an entire 
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function, plus a residue evaluated at the pole. The optimum choice of L for this-and 
more generally, for any functionf(z) with two distinct length scales- is necessarily a 
compromise between those values of L which would separately minimize the two 
terms. Here, algebraic mapping is far superior to domain truncation because its 
stationary point contribution is much less sensitive to L than its counterpart for 
domain truncation. One finds 

L = q,,Wk+ 1) (7.1) 

E - 0[e- Q&l(4k+ll 

total I? (7.2) 

where q, Q are constants defined in (3.41) through (3.45). The convergence is still 
“subgeometric” as defined in Section 2, but the numerical tables of Section 4 show 
that very good results are possible even when the singularity is close to the expansion 
interval. 

TABLE VII 

Summary of Results, Semi-Infinite Domain 

Domain truncation 

k=l 

Algebraic mapping 

L = 0.896 n/A 

I 

entire 

1 

L = 0.101 n/A 
functions, 

S = 2.45 optimum 6 = 2.414 

L = , .39/f -2/3&,2/3 

log E u -1.59A”3s’f3n2/3 

singular 
functions, 
optimum I 

L = 1 41s3/5A -2/6,,2/5 

log E = -1.68~“~A~~‘d~~ 

k=2 

L = 0.896 (PZ/A)“~ entire L = 0.521 (n/A)“’ 
functions, 

6 = 2.23 I optimum ! 6= 1.50 

L = 1 3u -2/spn1/5 

I 

singular 

I 

L = 2 47$/9A -1/9,,1/9 

functions, 
log E z -1.74/f -‘/5s2/5n4/5 optimum log E N -1.2l~~~~A”~n~‘~ 

Note. The model functions are the entire functionf(z) = exp[-Azk] and the singular functionf(z) = 
exp[-Ar’]/(z + s), where k is the “order” of the function and s is a constant. For “domain truncation,” 
L is the size of the truncated computational domain z E [O, L] which is used to approximate the semi- 
infinite domain z E [0, co]. For “algebraic mapping,” L is the mapping parameter in the transformation 
Z= 2z/(L +z) - 1 from z E [0, co] to 2 E [-1, 11. For both methods, the total error is 
E fOtll = O@-“), where n is the number of Chebyshev polynomials in the approximation and 6 is the 
“error constant” tabulated above. 
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The striking simplicity of formulas like (7.1) and (7.2) has been bought at the price 
of a number of simplifications: (i) use of model functions; (ii) neglect of factors 
varying algebraically with n; (iii) a semi-infinite interval and (iv) consideration of 
functions with only one or two characteristic length scales. All these simplifications 
can in principle be relaxed. Miller [5] and Tuan and Elliott [8] have attacked more 
complicated functions than the models used here. The methods of steepest descent 
and residues easily give the neglected algebraic factors. Section 5 discusses an infinite 
interval, and clearly, one can certainly juggle several distinct contributions to the 
asymptotic Chebyshev coefficients, instead of the limit of two arbitrarily imposed 
here, to find the best compromise between the conflicting demands of the nearest 
singularity, the scale of oscillation, the scales of exponential decay for large positive x 
and for large negative x and so on. 

It is precisely because the possible refinements are endless, that ruthless simplicity 
has been practiced here even at the risk of offending the mathematical purist. Such 
refinements obscure the fact that the underlying ideas are simple and they work. 

Further advances in the understanding of the asymptotic vehavior of Chebyshev 
series will be welcome, but the simple expressions derived here should be sufficient 
for most physics and engineering problems. If not, the methodology has been 
explained in enough detail so that one should be able to relax one or more of the 
simplifications made above so as to improve upon what is given here in a manner 
tailored to the problem at hand. Tables VII and VIII give a final summary of our 
results for selected parameter values. 

TABLE VIII 

Summary of Results, Infinite Domain 

Domain truncation Algebraic mapping 

K=2 

entire 
functions, 
optimum 

L’ = , m -‘i~s”/‘N’f” 

I 

singular L’ = 1 O3A -‘fJs13f’N’f5 
functions, 

log E cz -1.00A”3s’2”N2” optimum log E LX -0.96A”‘~‘~“N~~’ 

Note. The model functions are the entire functionf(z) = exp[-Azx] and the singular fimctionf(z) = 
exp[-Azxj/(z* + s’*), where K is the order and s’ is a constant. For domain truncation, L’ is the size of 
the finite domain z E J-L’,L’] which is used to approximate the inI%& interval z E [-co, a~]. For 
algebraic mapping, L’ is the parameter in the transformation Z = z/(L’z + z*), from z E [-co, co] to 
Z E I-1,1]. Only results for K = 2 are given because the Chebyrhev series coe!Ecients on the infinite 
interval are isomorphic with those of the semi-infinite interval given in Table 7. The isomorphism is 
expressed by Eqs. (5.7) to (5.10) in the text and also the definition, s” = s. N is the degree of the highest 
polynomial kept in the approximation. The total error is O[A-“‘I. 
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APPENDIX A: DETAILS OF STEEPEST DESCENT 

In this brief addendum, we will examine some of the details of the application of 
steepest descent to asymptotically evaluate Chebyshev coefficients which were 
omitted in the main body of the paper. The general method of steepest descent is 
lucidly discussed in Bender and Orszag [9]. 

The phase function Q(Z) of the integral representation we use with domain trun- 
cation is 

@ = -[A(L/2)k](Z + I)k - n log[Z + (Z’ - l)“‘]. (3.12) 

The stationary points Z, of the integral are the roots of 

d@ 
-= -Pw2)kl k(Z + ok-’ - z + (z:- 1)1/2 (1 + dZ (A-1) 

In general, these roots must be computed numerically, but when JZI % 1, (Al) 
simplified to 

Zk = - a(L;2)%) 

which has the k solutions 

Z, = A ,~~~l,k ein[l+ZU-')l/k, j = I,..., k. 

In the limit that n + 00 with L and k fixed, IZ,I --) co according to (A3), so this 
approximation for the stationary points is consistent and gives the “regular” 
asymptotics. 

If the integral is deformed via Cauchy’s theorem into a steepest descent path, then 
the integral is approximately given by the sum of the separate contributions from 
each stationary point on the path. Figure 2 shows some sample contours for various 
k. In the present case, all k stationary points lie on the path and Re[d(Zs)] is the 
same for each, so we must add all k terms together. We need not worry about 
endpoint contributions because our contours are closed and thus have no endpoints. 

For the “uniform” asymptotics in which L a n Ilk, the approximation (A3) is not 
justified and the roots of (3.12) were obtained numerically. The formulas (3.25) for L 
and 6 were found empirically rather than deductively. They agree with the numerical 
results to all places calculated and are probably exact, but I have not verified this. 

Similarly, the phase function 4 for the integral representation used with algebraic 
mapping is 

# = -[ALk] cotanzk(t/2) -I- int (3.14) 
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FIG. 2. Schematic steepest descent contours for (3.11) based on numerically tracing the exact 
contours, for k = 1 (solid line), k = 2 (dashed), and k = 3 (dotted). The stationary points are marked by 
a cross within a circle. 

and thus the stationary points t, are the roots of 

d# _ COP-‘(t/2) * 
dt- sin2’+l(t/2) + kL.* * (A4) 

In the limit n + co with L fixed, 1 t, ( + 0 and (A4) can be approximated by 

2k+l ikALk =-. 
n W) 

This also has multiple solutions like (A2), but unlike it, the only stationary point of 
(A5) which lies on the steepest descent path is the one nearest the positive real axis 
which is 

The steepest descent path is shown in Fig. 3. The asymptotic form of I,, (defined by 
3.13) is the sum of the contribution from the stationary point given by (A6) plus a 
(much larger!) end point contribution from near t = z. (There is no endpoint 
contribution from near t = 0 because the integrand is exponentially small there). 
However, b, = I,‘+ I,* and the endpoint contributions cancel out so that b, is purely 
the sum of the stationary point term. 

For the “uniform” asymptotics for which n and L jointly tend to infinity with 
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- 
I?&) 

FIG. 3. Schematic steepest contour for evaluating the integral I,, defined by (3.13), for k = 1. The 
contours for higher k are similar. 

L cc n”&, (A4) must in general be solved numerically. However, for the special case 
of the optimum L, we can obtain an analytic solution for all the quantities of interest. 

As before, let 

ALk = In, (3.19) 

where 1 is a constant. The optimum Iz is that which minimizes Re[#(t,)] as a function 
of A for fixed A (and any n since (A4) is independent of n when (3.19) is substituted 
into it). This means that we want Re[d#/&] = 0 with t, defined as an implicit 
function of A through (A4). However, 

047) 

= -cotan2k(t/2), 649) 

where (A8) follows from the fact that ad/at = 0 is the condition for a stationary point 
and (A9) from .direct differentiation of (3.14). 

If we define the new variable 

y = cotan(r/2) (A 10) 
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then the condition that the real part of (A9) vanish gives 

(All) 

The imaginary part of (A9) need not vanish, but the stationary point condition (A4) 
must be satisfied. By using the trigonometric identity 

1 
sin* (t/2) 

= 1 + cotan*(t/2) 

we can rewrite the stationary point condition (A4) as 

y-(1 + y’) = IL. 

(‘412) 

(A13) 

Since arg(y) is already known, (A13) is (separating real and imaginary parts) 
equivalent to two equations in two unknowns (]JJ] and A) which may be trivially 
solved to give 

1 
A = 2k cos[lr/4k] ’ 

(3.26a) 

t, = 2 cotan-‘[e-in’(4k)]. (A14) 

Since cotanzk(t,/2) is imaginary when Iz is equal to its optimum value given by 
(3.26a), (3.14) [or equivalently (3.22)] simplifies to 

4?M4)1 = -@nM. (Al51 
To obtain the imaginary part of t,, we can rewrite (A15) as 

tm @s) _ @rllk 

2 ’ 0416) 

define 

t ,=x+ir, (A17) 

and then exploit two trigonometric identities from Abramowitz and Stegun [lo] 

’ w3) 

(A19) 
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where the right-hand sides follow from (A16). A moment’s thought will show the first 
identity (A18) can only be satisfied if 

x=$. 

Substituting this into (A19), taking the tangent of both sides and defining 

gives 

or equivalently 

n: 
p=tm 4k ( 1 

p = sinh( Y) 

Y = sinhe’@) 

= ln[p + {p’ + l}“‘], 

where we have used the logarithmic form of sinh-‘in (A23). Equating 

(A20) 

(3.26~) 

6421) 

(‘422) 

(~23) 

(A24). 

FIG. 4. The steepest descent contour C, and an allowable contour C, for the coefficient integral for 
the exponential-with-a-pole defined by (3.27) for k = 1. The stationary point is marked by an x enclosed 
in a circle. The cross-hatched line is the branch cut between -1 and 1 which both C, and C, enclose. It 
is assumed in the graph and the text that n is large enough so that C, encloses the pole. For smaller n 
for which C, does not enclose the pole, b, is not at&ted by the pole to within the limits of the steepest 
descent approximation and the integrals around C, and C, are equal. 
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FIG. 5. Similar to Fig. 4 but for algebraic mapping. C, is the original contour of integration along 
the real axis and C, is the steepest descent path. The stationary point and pole are marked by circles 
enclosing x and a dot, respectively. The original pole in the variable 2 is mapped by the trigonometric 
change of variable Z = cos t into a pair of complex conjugate poles, one in the upper half I-plane for I,, 
the other below the real axis for I:. For convenience, the pole has been taken to lie on the negative Z 
axis in both Fig. 4 and (implicitly) here, but its location may be complex. 

and using (A17) and (A23) gives 

6=p+ {p* + l}“? (3.26b) 

Applying the method of steepest descent to a model function with a singularity is 
straight forward. The only complication is that in both cases as shown in Figs. 4 and 
5, the integrals around original contours of integration C, differ from the integrals on 
the steepest descent paths C, by the residue at the pole. 
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